#### 题目列表

The sum of n numbers is greater than 48. If the average (arithmetic mean) of the n numbers is 1.2, what is the least possible value of n?
3x+y=5x-y

x

y

5(x-y+20)=y+100

y≠0

#### Quantity A

$\frac{x}{y}$

#### Quantity B

1

x((75+y)+(15-y))=900

xy

10

1 < 2x+1 < 3

#### Quantity A

($x^{2}$-5)-(x-5)

#### Quantity B

0

R wins 101 more votes than T. If x votes are removed from R and given to T, then T will have more votes than R.

#### Quantity A

The least value of x

#### Quantity B

51

x > 0 and $\frac{5}{27}$ $x^{2}$=x

x

#### Quantity B

5

x and y are positive integers

$x^{2}$+$y^{2}$=89

xy=40

|x-y|

#### Quantity B

3

xy = 2

If the average of x and y is 3, then $x^{2}$ + $y^{2}$ = ?
If $(x+\frac{1}{x})^{2}$=4, then $x^{2}$+$(\frac{1}{x})^{2}$= ?
x > 0, y > 0

x+y

#### Quantity B

$\sqrt{x^{2}+y^{2}}$

x > 0, y < 0

Quantity A:x+y-1

Quantity B:x-y+1
y+5 > x

y+2

x-2

x-y=1

#### Quantity A

$x^{2}$ - $y^{2}$

#### Quantity B

0

-1 ≤ x ≤ 1and -1 ≤ y ≤ 1

#### Quantity A

$(x+y)^{2}$

#### Quantity B

$xy^{2}$

x+y≠0

#### Quantity A

$(x+y)^{2}$

#### Quantity B

$(2x+2y)^{2}$

x > 0, y < 0

Quantity A:x+y-1

Quantity B:x-y+1

#### Quantity A

$(x+\frac{1}{x})^{-3}$

#### Quantity B

$x^{-3}$ + $(\frac{1}{x})^{-3}$

x-y > y

x-y < x

Quantity A: x

Quantity B: y

#### Quantity A

($x^{2}$ + $y^{2}$) ($x^{2}$ - $y^{2}$)

#### Quantity B

($x^{3}$+$y^{3}$) (x-y)

1 2 ... 6 7 8 9 10 11 12 ... 29 30

25000 +道题目

140本备考书籍