#### 题目列表

In the xy-plane, C and D are circles centered at the origin with radii $\sqrt{17}$ and $\sqrt{5}$, respectively.

#### Quantity A

The number of points (a, b) on circle C where both a and b are integers

#### Quantity B

The number of points (a, b) on circle D where both a and b are integers

In a distribution of the values of the variable x, the 50th percentile is 48.5 and the 60th percentile is 56.5.

#### Quantity A

The 40th percentile of the distribution of the values of x

#### Quantity B

40.5

What is the greatest possible even integer that equals to 530 when rounded to the nearest 10?
If the value of a double-digit number is twice the sum of its tens digit and units digit, then double-digit number must be?
n is a positive integer, x = 7n + 2, and y = 6n + 3

#### Quantity A

The ones digit of x+y

#### Quantity B

5

x* is defined as the 3-digit integer formed by reversing the digits of integer x; for instance, 258* is equal to 852. R is a 3-digit integer such that its units digit is 2 greater than its hundreds digit.

R*-R

#### Quantity B

200

Each of the offices on the second floor of a certain building has a floor area of either 250 or 300 square feet. The total space of these offices is 5,750 square feet.

#### Quantity A

The number of these offices with floor areas of 250 sqaure feet

#### Quantity B

The number of these offices with floor areas of 300 sqaure feet

In a 3-digit integer, its hundreds digit is greater than its tens digit, while its tens digit is greater than its units digit. If the sum of any of the two digits is less than 10, while the sum of all the three digits is 12. What is the 3-digit integer?
The 20 people at a party are divided into n mutually exclusive groups in such a way that the number of people in any group does not exceed the number in any other group by more than 1.

#### Quantity A

The value of n if at least one of the groups consists of 3 people

#### Quantity B

6

m is a positive integer, n is an odd positive integer, n·$2^{m}$=160

n

#### Quantity B

m

The mean of four different integers is 32, while the least of them is 27. The largest possible integer among the list is?
In a list of ten positive integers, the same number could appear at most twice. If the sum of them is 101, then what is the greatest possible number in the list?
If N is an integer and 99<$N^{2}$<200, then N could have at most how many values?
$x^{2}$y > 0, x$y^{2}$ < 0

x

#### Quantity B

y

If -1< y < 0, what is the relationship between y, $y^{2}$, $y^{3}$, and $y^{4}$?
If a < b < 0, which of the following numbers must be positive?

Indicate all such numbers.
When selecting four different integers from -5 to 4, inclusive, what is the least possible product of these four integers?
r and t are consecutive integers and p=$r^{2}$+t

#### Quantity A

$(-1)^{p}$

#### Quantity B

-1

What is the sum of all the possible different 3-digit positive integers that can be formed using each of the digits 7, 8, and 9, without repetition?
The sum of three or more consecutive integers CANNOT be?
1 2 ... 6 7 8 9 10 11 12 ... 27 28

25000 +道题目

139本备考书籍